If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18y^2+9y=45
We move all terms to the left:
18y^2+9y-(45)=0
a = 18; b = 9; c = -45;
Δ = b2-4ac
Δ = 92-4·18·(-45)
Δ = 3321
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3321}=\sqrt{81*41}=\sqrt{81}*\sqrt{41}=9\sqrt{41}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9\sqrt{41}}{2*18}=\frac{-9-9\sqrt{41}}{36} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9\sqrt{41}}{2*18}=\frac{-9+9\sqrt{41}}{36} $
| y+2/7=4/5 | | -m-+1=-1-m+m | | 3(4x-12)+8=35 | | 4r-8(1-6r)=38+6r | | (2x+6)/3=-8 | | 6=7x-× | | 3(m-4)-5=4 | | ((9u+4)/5)+((3u-5)/2)=28 | | 5=-1/2(2x-4)-2x | | -4-p=2+3p-7p | | x+8=16+5x | | f-16=36 | | 10=-4x-2x+5 | | 5x+8+48=11x+6 | | 3(4g+6=2(6g+9) | | 3x+10=47 | | y-3.7=4.2 | | 5x+6-3x+10=12-4x+2x | | 2x-5(x-9)=1 | | 3x²-5=2x | | 17=y-12 | | 2(x+5)/5=1+3+5x/4 | | 2x-5(x-9=1 | | P=2,320(1.2)x | | 3a=-3.5a | | 3a=3.5a | | -32+b=20 | | 7*x/3=8 | | 2x+2(-7+4x)=1-x | | d=|300−48| | | -2=y=9 | | -6h+7)+8=-19 |